Теплоустановка Потапова

Теплоустановка Потапова

Теплогенератор Потапова не известен широким народным массам и еще мало изучен с научной точки зрения. Впервые попробовать осуществить пришедшую в голову идею Юрий Семенович Потапов осмелился уже ближе к концу восьмидесятых годов прошлого столетия. Исследования проводились в городе Кишиневе. Исследователь не ошибся, и результаты попыток превзошли все его ожидания.

Готовый теплогенератор удалось запатентовать и пустить в общее пользование лишь в начале февраля 2000 года.

Чертеж вихревого теплогенератора.

Чертеж вихревого теплогенератора.

Все имеющиеся мнения в отношении созданного Потаповым теплогенератора достаточно сильно расходятся. Кто-то считает его практически мировым изобретением, приписывают ему очень высокую экономичность при эксплуатации – до 150%, а в отдельных случаях и до 200% экономии энергии. Считают, что практически создан неиссякаемый источник энергии на Земле без вредных последствий для окружающей среды. Другие же утверждают обратное – мол, все это шарлатанство, и теплогенератор, на самом деле, требует ресурсов даже больше, чем при использовании его типовых аналогов.

По некоторым источникам, разработки Потапова запрещены в России, Украине и на территории Молдовы. По другим источникам, все-таки, на настоящий момент в нашей стране термогенераторы подобного типа выпускают несколько десятков заводов и продаются они по всему миру, давно пользуются спросом и занимают призовые места на различных технических выставках.
Описательная характеристика строения теплогенератора
Представить, как выглядит теплогенератор Потапова можно, тщательно изучив схему его строения. Тем более, что состоит он из достаточно типовых деталей, и о чем идет речь, понять будет не сложно.

Схема стационарного теплогенератора.

Схема стационарного теплогенератора.

Итак, центральной и самой основательной частью теплогенератора Потапова является его корпус. Он занимает центральное положение во всей конструкции и имеет цилиндрическую форму, установлен он вертикально. К нижней части корпуса, его фундаменту, торцом присоединен циклон для зарождения в нем вихревых потоков и увеличения скорости продвижения жидкости. Поскольку установка в основе своего действия имеет большие скоростные явления, то в ее конструкции необходимо было предусмотреть элементы, тормозящие весь процесс для более удобного управления.

Для таких целей в противоположной стороне от циклона к корпусу присоединяется специальное тормозное устройство. Оно тоже цилиндрической формы, в центре его установлена ось. На оси по радиусам прикреплены несколько ребер, количеством от двух. Следом за тормозным устройством предусмотрено дно, снабженное выходным отверстием для жидкости. Далее по ходу отверстие преобразуется в патрубок.

Это основные элементы теплогенератора, все они расположены в вертикальной плоскости и плотно соединены. Дополнительно патрубок для выхода жидкости оснащен перепускным патрубком. Они плотно скреплены и обеспечивают контакт двух концов цепочки основных элементов: то есть патрубок верхней части соединен с циклоном в нижней части. В месте сцепления перепускного патрубка с циклоном предусмотрено добавочное малое тормозное устройство. К торцевой части циклона под прямым углом к оси основной цепочки элементов прибора присоединен инжекционный патрубок.

Инжекционный патрубок предусмотрен конструкцией устройства с целью соединения насоса с циклоном, приводящими и отводящими трубопроводами для жидкости.

Прототип теплогенератора Потапова

Схема механизма работы теплового насоса.

Схема механизма работы теплового насоса.

Вдохновителем Юрия Семеновича Потапова на создание теплогенератора стала вихревая труба Ранка. Труба Ранка была изобретена с целью разделения горячей и холодной масс воздуха. Позже в трубу Ранка стали запускать и воду с целью получения аналогичного результата. Вихревые потоки брали свое начало в так называемой улитке – конструктивной части прибора. В процессе применения трубы Ранка было замечено, что вода после прохождения улиткообразного расширения прибора изменяла свою температуру в положительную сторону.

На это необычное, до конца не обоснованное с научной точки зрения явление и обратил внимание Потапов, применив его для изобретения теплогенератора с одним лишь небольшим отличием в результате. После прохождения воды через вихрь ее потоки не резко делились на горячий и холодный, как это происходило с воздухом в трубе Ранка, а на теплый и горячий. В результате некоторых измерительных исследований новой разработки Юрий Семенович Потапов выяснил, что самая энергозатратная часть всего прибора – электрический насос – затрачивает намного меньше энергии, чем ее вырабатывается в результате работы. В этом и заключается принцип экономичности, на котором основан теплогенератор.

Физические явления, на основе которых действует теплогенератор
В общем-то, в способе действия теплогенератора Потапова ничего сложного или необычного нет.

Принцип действия этого изобретения основан на процессе кавитации, отсюда его еще называют вихревым теплогенератором. Кавитация основана на образовании пузырьков воздуха в толще воды, вызванном силой вихревой энергии потока воды. Образование пузырьков всегда сопровождается специфическим звуком и образованием некой энергии в результате их ударов на большой скорости. Пузырьки представляют собой полости в воде, заполненные испарениями от воды, в которой они сами и образовались. Жидкость оказывает постоянное давление на пузырек, соответственно, он стремится перемещаться из области высокого давления в область низкого, дабы уцелеть. В итоге, он не выдерживает давления и резко сжимается или «лопается», при этом выплескивая энергию, образующую волну.

Схема устройства вихревой теплосистемы.

Схема устройства вихревой теплосистемы.

Выделяемая «взрывная» энергия большого количества пузырьков обладает такой силой, что способна разрушить внушительные металлические конструкции. Именно такая энергия и служит добавочной при нагреве. Для теплогенератора предусмотрен полностью закрытый контур, в котором образуются пузырьки очень малого размера, лопающиеся в толще воды. Они не обладают такой разрушительной силой, но обеспечивают прирост тепловой энергии до 80%. В контуре обеспечивается поддержание переменного тока напряжением до 220В, целостность важных для процесса электронов при этом сохраняется.

Как уже было сказано, для работы тепловой установки необходимо образование «водяного вихря». За это отвечает встроенный в тепловую установку насос, который образовывает необходимый уровень давления и с силой направляет его в рабочую емкость. Во время возникновения завихрения в воде происходят определенные перемены с механической энергией в толще жидкости. В результате начинает устанавливаться одинаковый температурный режим. Дополнительная энергия создается, по Эйнштейну, переходом некой массы в необходимое тепло, весь процесс сопровождается холодным ядерным синтезом.

Принцип действия теплогенератора Потапова

Схема вихревого теплогенератора «МУСТ».

Схема вихревого теплогенератора «МУСТ».

Для полного понимания всех тонкостей в характере работы такого устройства, как теплогенератор, следует рассмотреть поэтапно все стадии процесса нагрева жидкости.

В системе теплогенератора насос создает давление на уровне от 4 до 6 атм. Под созданным давлением вода с напором поступает в инжекционный патрубок, присоединенный к фланцу запущенного центробежного насоса. Поток жидкости стремительно врывается в полость улитки, подобной улитке в трубе Ранка. Жидкость, как и в проделанном с воздухом опыте, начинает быстро вращаться по изогнутому каналу для достижения эффекта кавитации.

Следующий элемент, который содержит теплогенератор и куда попадает жидкость – это вихревая труба, в этот момент вода уже достигла одноименного характера и движется стремительно. В соответствии с разработками Потапова, длина вихревой трубы в разы превышает размеры ее ширины. Противоположный край вихревой трубы является уже горячим, туда-то и направляется жидкость.

Схема теплового насоса.

Схема теплового насоса.

Чтобы достичь необходимой точки, она проходит свой путь по винтообразно закрученной спирали. Винтовая спираль располагается около стенок вихревой трубы. Через мгновение жидкость достигает своего пункта назначения – горячей точки вихревой трубы. Этим действием завершается движение жидкости по основному корпусу устройства. Следом конструктивно предусмотрено основное тормозное устройство. Это устройство предназначено для частичного вывода горячей жидкости из обретенного ею состояния, то есть поток несколько выравнивается благодаря радиальным пластинам, закрепленным на втулке. Втулка имеет внутреннюю пустую полость, которая соединяется с малым тормозным устройством, следующим за циклоном в схеме строения теплогенератора.

Вдоль стенок тормозного устройства горячая жидкость все ближе продвигается к выходу из устройства. Тем временем, по внутренней полости втулки основного тормозного устройства навстречу потоку горячей жидкости протекает вихревой поток отведенной холодной жидкости.

Времени контакта двух потоков через стенки втулки достаточно, чтобы нагреть холодную жидкость. И теперь уже теплый поток направляется к выходу через малое тормозное устройство. Дополнительный нагрев теплого потока осуществляется во время прохождения его по тормозному устройству под действием явления кавитации. Хорошо прогретая жидкость готова выйти из малого тормозного устройства по байпасу и пройти по основному отводящему патрубку, соединяющему два конца основной цепи элементов теплового устройства.

Горячий теплоноситель также направляется на выход, но в противоположном направлении. Вспомним, что к верхней части тормозного устройства прикрепляется дно, в центральной части дна предусмотрено отверстие с диаметром, равным диаметру вихревой трубы.

Схема подключения теплогенератора к системе отопления.

Схема подключения теплогенератора к системе отопления.

Вихревая труба, в свою очередь, соединена отверстием в дне. Следовательно, горячая жидкость заканчивает свое движение по вихревой трубе проходом в отверстие дна. После горячая жидкость попадает в основной отводящий патрубок, где смешивается с теплым потоком. На этом движение жидкостей по системе теплогенератора Потапова закончено. На выход из нагревателя вода поступает с верхней части отводного патрубка – горячая, а из нижней его части – теплая, в нем же она смешивается, готовая к использованию. Горячая вода может применяться либо в водопроводе для хозяйственных нужд, либо в качестве теплоносителя в системе отопления. Все этапы работы теплогенератора проходят в присутствии эфира.

Особенности применения теплогенератора Потапова для отопления помещений
Как известно, нагретую воду в термогенераторе Потапова можно использовать в различных бытовых целях. Достаточно выгодным и удобным может быть применение теплогенератора в качестве конструктивной единицы отопительной системы. Если исходить из указанных экономических параметров установки, то ни одно другое устройство не сравнится по экономии.

Итак, при использовании теплогенератора Потапова для нагрева теплоносителя и пуска его в систему предусмотрен следующий порядок: отработанная уже жидкость с более низкой температурой от первичного контура снова поступает в центробежный насос. В свою очередь, центробежный насос отправляет теплую воду через патрубок непосредственно в систему отопления.

Преимущества теплогенераторов при использовании для отопления
Наиболее явное преимущество теплогенераторов – достаточно простое обслуживание, несмотря на возможность свободной установки без спроса специального разрешения на то у сотрудников электросетей. Достаточно раз в полгода проверить трущиеся детали устройства – подшипники и сальники. При этом, по заявлениям поставщиков, средний гарантированный срок службы – до 15 лет и более.

Схема устройства тепловой пушки.

Схема устройства тепловой пушки.

Теплогенератор Потапова отличается полной безопасностью и безвредностью для окружающей среды и использующих его людей. Экологичность обоснована тем, что при работе кавитационного теплогенератора исключаются выбросы в атмосферу вреднейших продуктов от переработки природного газа, твердотопливных материалов и дизельного топлива. Они просто не используются.

Подпитка работы происходит от электросети. Исключается возможность возникновения возгорания по причине отсутствия контакта с открытым огнем. Дополнительную безопасность обеспечивает приборная панель устройства, с ней производится тотальный контроль за всеми процессами изменения температуры и давления в системе.

Экономическая эффективность при отоплении помещения теплогенераторами выражается в нескольких преимуществах. Во-первых, не нужно заботиться о качестве воды, когда она играет роль теплоносителя. Думать о том, что она причинит вред всей системе только по причине ее низкого качества, не придется. Во-вторых, финансовых вложений в обустройство, прокладку и обслуживание тепловых трасс делать не нужно. В третьих, нагрев воды с использованием физических законов и применения кавитации и вихревых потоков полностью исключает появления кальциевых камней на внутренних стенках установки. В четвертых, исключаются траты денежных средств на транспортировку, хранение и приобретение ранее необходимых топливных материалов (природного угля, твердотопливных материалов, нефтяных продуктов).

Неоспоримое преимущество теплогенераторов для домашнего пользования заключается в их исключительной универсальности. Спектр применения теплогенераторов в бытовом обиходе очень широк:

Схема гидровихревого теплогенератора.

Схема гидровихревого теплогенератора.

  • в результате прохождения через систему вода преобразуется, структурируется, а болезнетворные микробы в таких условиях погибают;
  • водой из теплогенератора можно поливать растения, что будет способствовать их бурному росту;
  • теплогенератор способен нагреть воду до температуры, превышающей точку кипения;
  • теплогенератор может работать в совокупности с уже используемыми системами или быть встроенным в новую отопительную систему;
  • теплогенератор уже давно используется осведомленными о нем людьми в качестве основного элемента отопительной системы в домах;
  • теплогенератор легко и без особых затрат подготавливает горячую воду для использования ее в хозяйственных нуждах;
  • теплогенератор может нагревать жидкости, используемые по различным назначениям.

Совершенно неожиданным преимуществом является то, что теплогенератор можно применять даже для переработки нефти. Ввиду уникальности разработки, вихревая установка способна разжижать тяжелые пробы нефти, провести подготовительные мероприятия перед транспортировкой на нефтеперерабатывающие заводы. Все указанные процессы проводятся с минимальными затратами.

Следует отметить способность теплогенераторов к абсолютно автономной работе. То есть режим интенсивности его работы можно задать самостоятельно. К тому же, все конструкции теплогенератора Потапова очень просты при монтаже. Привлекать работников сервисных организаций не потребуется, все операции по установке можно проделать самостоятельно.

Самостоятельная установка теплогенератора Потапова

Схема вихревого теплогенератора.

Схема вихревого теплогенератора.

Для установки своими руками вихревого теплогенератора Потапова в качестве основного элемента отопительной системы требуется достаточно мало инструментов и материалов. Это при условии, что разводка самой отопительной системы уже готова, то есть регистры подвешены под окнами и соединены между собой трубами. Остается только подключить устройство, подающее горячий теплоноситель. Необходимо подготовить:

  • хомуты – для плотного соединения труб системы и труб теплогенератора, типы соединений будут зависеть от используемых материалов труб;
  • инструменты для холодной или горячей сварки – при использовании труб с обеих сторон;
  • герметик для уплотнения соединений;
  • плоскогубцы для утяжки хомутов.

При установке теплогенератора предусмотрена диагональная разводка труб, то есть по ходу движения горячий теплоноситель будет подаваться в верхний патрубок батареи, проходить через нее, а остывающий теплоноситель будет выходить из противоположного нижнего патрубка.

Непосредственно перед установкой теплогенератора необходимо убедиться в целостности и исправности всех его элементов. Затем выбранным способом нужно подсоединить подающий воду патрубок к подающему в систему. То же самое проделать с отводящими патрубками – соединить соответствующие. Затем следует позаботиться о подключении в систему отопления необходимых контролирующих приборов:

  • предохранительный клапан для поддержания давления системы в норме;
  • циркуляционный насос для принуждения движения жидкости по системе.

После теплогенератор подключается к электропитанию напряжением 220В, и проводится заполнение системы водой при открытых воздушных задвижках.